Search results

Search for "regenerative medicine" in Full Text gives 24 result(s) in Beilstein Journal of Nanotechnology.

Hierarchically patterned polyurethane microgrooves featuring nanopillars or nanoholes for neurite elongation and alignment

  • Lester Uy Vinzons,
  • Guo-Chung Dong and
  • Shu-Ping Lin

Beilstein J. Nanotechnol. 2023, 14, 1157–1168, doi:10.3762/bjnano.14.96

Graphical Abstract
  • Lester Uy Vinzons Guo-Chung Dong Shu-Ping Lin Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung City 40227, Taiwan (R.O.C.) Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli County 35053
  • . Acknowledgements Lester U. Vinzons carried out his thesis research under the auspices of the Doctoral Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University and National Health Research Institutes. The authors would like to thank Dr. Jiann-Yeu Chen and Hung-Yan Lin of the NCHU i
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • nanoparticles have been proposed as contrast agents for magnetic resonance imaging, high-precision biosensors, and carriers in magnetic-assisted drug delivery systems. Furthermore, they are used for tumor treatment via the hyperthermia method and in bone tissue regenerative medicine [5][6]. However, using iron
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • promising applications in bone tissue engineering [55]. 3D printing chitosan material for bone tissue engineering The 3D printing is an emerging technique used in tissue engineering, in which biomaterials are 3D printed to mimic the native tissue architecture. In bone tissue engineering and regenerative
  • medicine, the 3D scaffold system was used to imitate bone tissue anatomy. These scaffold systems consist of composite scaffolds of polymeric materials. Among other composite materials, chitosan composites were widely used in bone tissue engineering applications due to their porous nature and
PDF
Review
Published 29 Sep 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • /nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes. Keywords: biological cues; cartilage regeneration; micro/nanotopographical cues; nanotechnology; osteoarthritis; regenerative medicine; Review 1 Introduction Osteoarthritis (OA) is a widespread degenerative disease of
  • matrices for cell transplantation in the late 1980s [18], there have been numerous developments in the design and fabrication of bioinspired and smart biomaterials with improved potential of TE as a regenerative medicine approach. The development of hydrogel-based scaffolds for regenerative medicine
  • biomimetic nanocomposites to imitate pseudostratified features of the ECM to develop bioinspired scaffolds [47][48][49]. 3.1.2.1 Nanoparticles (NPs). In recent years, NPs have been increasingly used in regenerative medicine (Table 1) and other medical areas. NPs have been successfully developed for drug
PDF
Album
Review
Published 11 Apr 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • regenerative medicine because of the utilization of the endogenous stem cells of the host or tissue-specific progenitor cells at the injury site. Akermanite is a bioceramic that has received significant attention because, after implantation, it can release Ca, Si, and Mg ions, which enhances adhesion
PDF
Album
Review
Published 14 Feb 2022

Use of nanosystems to improve the anticancer effects of curcumin

  • Andrea M. Araya-Sibaja,
  • Norma J. Salazar-López,
  • Krissia Wilhelm Romero,
  • José R. Vega-Baudrit,
  • J. Abraham Domínguez-Avila,
  • Carlos A. Velázquez Contreras,
  • Ramón E. Robles-Zepeda,
  • Mirtha Navarro-Hoyos and
  • Gustavo A. González-Aguilar

Beilstein J. Nanotechnol. 2021, 12, 1047–1062, doi:10.3762/bjnano.12.78

Graphical Abstract
  • administration is required and for regenerative medicine [9][10], although new applications are constantly being developed. Some of the main advantages of nanosized drug administration include an improved pharmacokinetic profile, higher selectivity towards tumor cells, and increased cellular and organelle
PDF
Album
Review
Published 15 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Silver nanoparticles induce the cardiomyogenic differentiation of bone marrow derived mesenchymal stem cells via telomere length extension

  • Khosro Adibkia,
  • Ali Ehsani,
  • Asma Jodaei,
  • Ezzatollah Fathi,
  • Raheleh Farahzadi and
  • Mohammad Barzegar-Jalali

Beilstein J. Nanotechnol. 2021, 12, 786–797, doi:10.3762/bjnano.12.62

Graphical Abstract
  • Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran 10.3762/bjnano.12.62 Abstract Finding new strategies for the treatment of heart failures using stem cells has attracted a lot of attention. Meanwhile, nanotechnology-based approaches to regenerative medicine hypothesize a
  • recently gained much attention in cell therapy regarding the repair of damaged heart tissue [3]. In regenerative medicine, bone marrow mesenchymal stem cells (BM-MSCs) and cardiac progenitor cells play a remarkable role in the regeneration of the myocardium [4]. Experimental studies related to the role of
  • initiate the differentiation into cell lineages such as cardiomyocytes, osteocytes, or chondrocytes [24]. Nanotechnology can boost stem cell differentiation and eliminate many obstacles thus improving its applicability in regenerative medicine [25]. The usage of nanomaterials in medicine has been
PDF
Album
Full Research Paper
Published 02 Aug 2021

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • Miao Qin Yueyou Peng Mengjie Xu Hui Yan Yizhu Cheng Xiumei Zhang Di Huang Weiyi Chen Yanfeng Meng Research Center for Nano-Biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
PDF
Album
Full Research Paper
Published 08 Jul 2020

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

  • Dávid Juriga,
  • Evelin Sipos,
  • Orsolya Hegedűs,
  • Gábor Varga,
  • Miklós Zrínyi,
  • Krisztina S. Nagy and
  • Angéla Jedlovszky-Hajdú

Beilstein J. Nanotechnol. 2019, 10, 2579–2593, doi:10.3762/bjnano.10.249

Graphical Abstract
  • usually complicated and expensive [3]. Recently, various types of polymer-based hydrogels have been developed for purposes of tissue engineering and regenerative medicine [26]. Most of these polymers try to mimic or recreate the natural environment of the cells, namely the extracellular matrix (ECM) [27
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • for the tissue regeneration therapy in biomedicine. Keywords: atomic force acoustic microscopy (AFAM); cell growth; nanopattern; stiffness; SU-8 photoresist; topography; Introduction The interactions of cells with extracellular matrices (ECMs) play important roles in regenerative medicine and tissue
  • the substrate to the cells. This approach is useful for the investigation of biological processes, tissue development and cell-based regenerative medicine. Fabrication of SU-8 films and differentiation of L929 cells cultured on the surfaces. (a) The fabrication process for producing tunable stiffness
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Characterization and influence of hydroxyapatite nanopowders on living cells

  • Przemyslaw Oberbek,
  • Tomasz Bolek,
  • Adrian Chlanda,
  • Seishiro Hirano,
  • Sylwia Kusnieruk,
  • Julia Rogowska-Tylman,
  • Ganna Nechyporenko,
  • Viktor Zinchenko,
  • Wojciech Swieszkowski and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2018, 9, 3079–3094, doi:10.3762/bjnano.9.286

Graphical Abstract
  • regenerative medicine. The use of nanosized hydroxyapatites in biomedical applications is constantly growing due to their good mechanical properties and enhanced efficiency of gene transfection in drug delivery. Calcium phosphates are sensitive to the preparation conditions [11][12][13][14][15]. They can be
PDF
Album
Full Research Paper
Published 27 Dec 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • ] states that regenerative medicine “…seeks to repair or regenerate damaged tissue and organs…without leaving scar tissue behind, thereby restoring both structure and function of tissues/organs.” The overall goal of life is to survive, and healing is one of the tools an organism uses to achieve this goal
PDF
Album
Review
Published 19 Mar 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • challenges for applying LC nanoarchitectures in tissue engineering fields is discussed. Keywords: biocolloid; biopolymer; cell-matrix interaction; mesophase; regenerative medicine; Review Introduction Liquid crystals (LCs) are ubiquitous in our life [1]. On one hand, LC materials play a central role in
  • not yet been sufficiently recognized among scientists in the field of tissue engineering and regenerative medicine, or even among experts in fields of LC technology. The objective of this review article is to deal with this issue with a multidisciplinary point of view. First, the ultrastructures and
  • discussed, in the context of their applications to cell templates and scaffolds for regenerative medicine. In particular, it is discussed how varying nanoarchitectures in different LC orders have been realized in several tissue engineering topics. Lastly, a perspective on the opportunities and challenges
PDF
Album
Review
Published 18 Jan 2018

Uptake and intracellular accumulation of diamond nanoparticles – a metabolic and cytotoxic study

  • Antonín Brož,
  • Lucie Bačáková,
  • Pavla Štenclová,
  • Alexander Kromka and
  • Štěpán Potocký

Beilstein J. Nanotechnol. 2017, 8, 1649–1657, doi:10.3762/bjnano.8.165

Graphical Abstract
  • are tailorable on demand [2]. This work investigates the use of diamond nanomaterials, or nanodiamonds (NDs), especially in life sciences, tissue engineering and regenerative medicine [3][4][5][6]. Diamond is biocompatible [7][8], and for advanced biomedical applications, it is particularly promising
PDF
Album
Supp Info
Full Research Paper
Published 10 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • materials. Peptide self-assembled hydrogels are inherently biocompatible and biodegradable and thus are promising biomaterials for cell culture, regenerative medicine, tissue engineering, and drug delivery applications [22]. The identification of self-assembling peptides that are as short as possible is
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Calcium fluoride based multifunctional nanoparticles for multimodal imaging

  • Marion Straßer,
  • Joachim H. X. Schrauth,
  • Sofia Dembski,
  • Daniel Haddad,
  • Bernd Ahrens,
  • Stefan Schweizer,
  • Bastian Christ,
  • Alevtina Cubukova,
  • Marco Metzger,
  • Heike Walles,
  • Peter M. Jakob and
  • Gerhard Sextl

Beilstein J. Nanotechnol. 2017, 8, 1484–1493, doi:10.3762/bjnano.8.148

Graphical Abstract
  • Translational Center Wuerzburg “Regenerative Therapies for Oncology and Musculosceletal Diseases”, Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Wuerzburg, Germany University Hospital Wuerzburg, Chair Tissue Engineering and Regenerative Medicine, Roentgenring 11, 97070
  • different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization
  • nanoparticles; magnetic resonance imaging (MRI); multifunctional nanoparticles; multimodal imaging; photoluminescence; Introduction In recent years, medical imaging has become an important approach in the fields of diagnostics, therapy and regenerative medicine. Besides the classical technology of X-ray
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2017

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

  • Sylwia Kuśnieruk,
  • Jacek Wojnarowicz,
  • Agnieszka Chodara,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 1586–1601, doi:10.3762/bjnano.7.153

Graphical Abstract
  • and investors. Hydroxyapatite is characterized by its biocompatibility and osteoconductivity. The material has been commonly and successfully used in regenerative medicine and in drug delivery systems [3][4]. Nanostructured hydroxyapatite particles can be applied as building blocks for damaged enamel
PDF
Album
Full Research Paper
Published 04 Nov 2016

Improved biocompatibility and efficient labeling of neural stem cells with poly(L-lysine)-coated maghemite nanoparticles

  • Igor M. Pongrac,
  • Marina Dobrivojević,
  • Lada Brkić Ahmed,
  • Michal Babič,
  • Miroslav Šlouf,
  • Daniel Horák and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 926–936, doi:10.3762/bjnano.7.84

Graphical Abstract
  • labeling makes poly(L-lysine)-coated maghemite nanoparticles appropriate candidates for future neural stem cell in vivo tracking studies. Keywords: dextran; maghemite; nanoparticles; neural stem cells; poly(L-lysine); Introduction Stem cell-based therapy is a developing area of regenerative medicine with
PDF
Album
Full Research Paper
Published 27 Jun 2016

Pulmonary surfactant augments cytotoxicity of silica nanoparticles: Studies on an in vitro air–blood barrier model

  • Jennifer Y. Kasper,
  • Lisa Feiden,
  • Maria I. Hermanns,
  • Christoph Bantz,
  • Michael Maskos,
  • Ronald E. Unger and
  • C. James Kirkpatrick

Beilstein J. Nanotechnol. 2015, 6, 517–528, doi:10.3762/bjnano.6.54

Graphical Abstract
  • Abstract The air–blood barrier is a very thin membrane of about 2.2 µm thickness and therefore represents an ideal portal of entry for nanoparticles to be used therapeutically in a regenerative medicine strategy. Until now, numerous studies using cellular airway models have been conducted in vitro in order
  • cytotoxicity of aSNP-surfactant interaction on cell cultures kept on the air–liquid interface (ALI). On ALI the epithelial cells develop a physiological surfactant monolayer as it occurs in vivo. Prospectively, the results are relevant for the field of regenerative medicine, in which nanoparticles could be
PDF
Album
Full Research Paper
Published 20 Feb 2015

Hematopoietic and mesenchymal stem cells: polymeric nanoparticle uptake and lineage differentiation

  • Ivonne Brüstle,
  • Thomas Simmet,
  • Gerd Ulrich Nienhaus,
  • Katharina Landfester and
  • Volker Mailänder

Beilstein J. Nanotechnol. 2015, 6, 383–395, doi:10.3762/bjnano.6.38

Graphical Abstract
  • great interest for tissue engineering approaches (e.g., for defects of bone or cartilage). Over 100 clinical trials employing hMSCs for regenerative medicine, for instance, after stroke and myocardial infarction [17], demonstrate that the clinical use of these cells is of utmost interest. Therefore, the
PDF
Album
Supp Info
Full Research Paper
Published 05 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • treatment conditions are the most appropriate for enhancing the surface functionality without affecting the morphological properties and chemical structure of the polymer. Mechanical behavior of the plasma-treated scaffolds A basic principle in regenerative medicine is to maintain the structural integrity
PDF
Album
Full Research Paper
Published 22 Jan 2015

Formation of stable Si–O–C submonolayers on hydrogen-terminated silicon(111) under low-temperature conditions

  • Yit Lung Khung,
  • Siti Hawa Ngalim,
  • Andrea Scaccabarozzi and
  • Dario Narducci

Beilstein J. Nanotechnol. 2015, 6, 19–26, doi:10.3762/bjnano.6.3

Graphical Abstract
  • Yit Lung Khung Siti Hawa Ngalim Andrea Scaccabarozzi Dario Narducci University of Milan-Bicocca, Department of Materials Science, Via R. Cozzi 53, I-20125 Milan, Italy Regenerative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, Penang, Malaysia 10.3762
PDF
Album
Letter
Published 05 Jan 2015

Imaging the intracellular degradation of biodegradable polymer nanoparticles

  • Anne-Kathrin Barthel,
  • Martin Dass,
  • Melanie Dröge,
  • Jens-Michael Cramer,
  • Daniela Baumann,
  • Markus Urban,
  • Katharina Landfester,
  • Volker Mailänder and
  • Ingo Lieberwirth

Beilstein J. Nanotechnol. 2014, 5, 1905–1917, doi:10.3762/bjnano.5.201

Graphical Abstract
  • cells (MSCs) were chosen because they are promising candidates for regenerative medicine [18][19] and they show a moderate cleavage rate without addition of transfection agents or mitotic inhibitors [20][21]. Common strategies to monitor and quantify the nanoparticle load on a single cell level are
PDF
Album
Full Research Paper
Published 29 Oct 2014
Other Beilstein-Institut Open Science Activities